domingo, março 18, 2012

Matemática- Quando ensinar?

Interpretação de enunciados
 
Cada problema que você propõe para a turma tem um grau de complexidade que deve considerado no seu planejamento

Nos primeiros anos, é essencial que o professor dê condições para que cada aluno amplie sua compreensão sobre o que os problemas pedem e consiga escolher o procedimento mais eficiente para a resolução. Uma atividade cujo objetivo é trabalhar a interpretação de enunciados não pode ser focada no tipo de operação, mas nas relações entre os números: se passam por alguma transformação negativa ou positiva, se são combinações de medidas, se é pedida uma comparação ou se combinam transformações sucessivas. E a discussão sobre essas relações e as operações nelas envolvidas é o que pode fazer com que a turma, com o tempo, consiga interpretar o que pede cada desafio. Trata-se de um trabalho progressivo e contínuo ao longo das séries iniciais. "A construção desses conhecimentos pelas crianças demora vários anos", aponta Claudia Broitman, professora de Didática da Matemática na Universidade Nacional de La Plata.

A divisão em categorias de problemas propostas pelo psicólogo francês Gérard Vergnaud, descritos no item 3.2 Interpretações de enunciados, é uma ferramenta interessante para organizar as sequências didáticas e os planos de aula. Claudia ressalta que essa classificação não precisa ser comunicada às crianças. "é um instrumento de trabalho entre os professores para selecionar, comparar, analisar e propor diferentes problemas". Uma sugestão é começar a trabalhar um tipo de problema com números menores, depois, aplicar a regularidade com maiores. As crianças também podem apresentar dificuldades quando a incógnita não está no fim do problema. Nesse caso, é interessante colocar a incógnita no estado final da situação para depois trabalhar o mesmo problema a deslocando ao estado ao inicial.
Fonte: Revista Nova Escola

Nenhum comentário:

Postar um comentário